Cyclotomic Rings, Lattices and Space-Time Block Codes

Xiang-Gen Xia

Department of Electrical and Computer Engineering
University of Delaware, Newark, DE, USA
Email: {xxia}@ee.udel.edu

Sponsored by AFOSR

AFOSR Program Review, University of Delaware, June 2-4, 2004

OUTLINE

- Motivation
- Cyclotomic Rings
- Cyclotomic Lattices
 - Complex Lattices and Some Existing Examples
 - Cyclotomic Lattices of Full Diversity
 - Cyclotomic Diagonal Space-Time Codes
- Optimal Cyclotomic Lattices and Diagonal Space-Time Codes
- Some Simulation Results
- Conclusion and Future Research

Multiple Antenna System

 L_t transmit antennas; L_r receive antennas; p is the time block size. α_{ij} is the channel coefficient from ith transmit to jth receive antenna and is a random variable.

Advantage of Multi-Antenna System: Capacity Gain

- Teletar (1995), Foschini and Gans (1998) proved that the capacity of a multi-antenna system is proportional to $\min\{L_t, L_r\}$.
 - Theoretically, the more transmit and receive antennas, the better the capacity!
 - Practically, how can we achieve the capacity (gain)?
 - Shannon communication theory tells us that the capacity can be achieved by coding and modulation, BUT HOW??
 - One of the most active research areas in communications theory!

Single Antenna Coding and Modulation

- Low rate transmission: 1 bit modulated to 1 number/symbol (BPSK)
- High rate trasnmission: multiple bits modulated to 1 number/symbol (M-QAM, M-PSK)
- Consider 4, 14-QAM: 2, 4 bits become a complex number/symbol:

These 4 points are optimal:
The minimum distance is maximal

These 16 points are almost optimal

What is Multiple Antenna Coding and Modulation: Signal Model

Transmit and receive signal model:

$$Y = AC + W$$

where

 $Y=(r_t^i)_{L_r \times p}$: Received signal matrix

 $A = (\alpha_{ij})_{L_r \times L_t}$: Channel coefficient matrix

 $C = (c_t^j)_{L_t \times p}$: Transmit signal matrix

 $W=(w_{i,t})_{L_r imes p}$: Additive white Gassian noice (AWGN) matrix.

What is Multiple Antenna Coding and Modulation

- ullet Multiple antenna coding/modulation: Binary information bits are modulated/mapped into $L_t imes p$ matrices and these matrices are taken from a pre-designed matrix set called *space-time code*.
- How to design a space-time code: It should be designed in such a way that the error probability at the receiver is minimized.

Space-Time Code Design Criteria

Based on the pair-wise error probability from the maximum-likelihood (ML) decoding, Guey-Fitz-Bell-Kuo and Tarokh-Seshadri-Calderbank proposed the following rank and diversity product criteria:

- Rank criterion: Any differece matrix of any two distinct matrices in a space-time code $\mathcal C$ has full rank;
- **Diversity product criterion** (or coding advantage or product distance):

$$\xi(\mathcal{C}) = \min_{C \neq \tilde{C} \in \mathcal{C}} |\det((C - \tilde{C})^{\dagger}(C - \tilde{C}))|$$

is as large as possible.

Some Existing Space-Time Coding Schemes

- Space-time block codes
 - BLAST–No full diversity
 - Alamouti scheme-Orthogonal space-time block codes from orthogonal designs, quasi orthogonal space-time codes
 Fast decoding with good performance BUT symbol rates are limited!
 - Unitary space-time codes: Group codes, Caley transforms, parametric codes, packing theory etc. – Good performance but no fast decoding in general, no systematic designs!
 - Space-time codes from binary linear codes Performance is limited!
 - Linear lattice based codes Fast sphere decoding, high rates,
 systematic: My focus
- Space-time trellis codes

Linear Lattice Based Space-Time Codes and Motivation

- BLAST schemes
- (Quasi) Orthogonal space-time codes (Alamouti, Tarokh et al, Jafarkhani, Tirkkonen et al etc.)
- Linear dispersive codes (Hassibi-Hochwald, Heath et al, Sandhu et al, etc.)
- Signal Space Diversity Codes and Diagonal Space-Time Codes using Algebraic Number Theory (Boutros-Viterbo, Giraud-Boutillon-Belfiore, Damen-Meraim-Belfiore, Sethuraman-Rajan,
 - The existing lattice based space-time block codes
 - * Not concrete but simply some abstract algebraic numbers
 - * Mostly based on square QAM, i.e., square lattice.
 - * Not optimized in terms of diversity product

- The **focus** of this presentation:
 - * Propose a general systematic and **concrete** cyclotomic full diversity lattices.
 - * Propose optimal cyclotomic lattices and space-time block codes in terms of maximized diversity product for fixed mean signal power.

General Problem Description

- ullet Let L_t be the number of transmit antennas.
- ullet Let G be an $L_t imes L_t$ matrix and

$$[\mathbf{y}_1, \cdots, \mathbf{y}_{L_t}]^T = G[\mathbf{x}_1, \cdots, \mathbf{x}_{L_t}]^T,$$

where x_i are information symbols.

• A diagonal space-time code Ω consists of $L_t \times L_t$ matrices of the form $\operatorname{diag}(\mathbf{y}_1, \cdots, \mathbf{y}_{L_t})$.

- ullet We are interested in such a diagonal space-time code Ω that
 - (i) it has the full rank property, i.e., any difference matrix of any two distinct matrices in Ω has full rank; and
 - (ii) its following diversity product is as large as possible:

$$\xi = \min_{\substack{\mathsf{diag}(\mathbf{y}_1, \cdots, \mathbf{y}_{L_t}) \neq \mathsf{diag}(\mathbf{e}_1, \cdots, \mathbf{e}_{L_t}) \in \Omega}} \ \prod_{i=1}^{L_t} |\mathbf{y}_i - \mathbf{e}_i|^2,$$

where the transmission signal mean power of y_i is fixed, or **equivalently**, the transmission signal mean power is minimized, when the diversity product is fixed.

Cyclotomic Rings

- Let $\zeta_m = \exp(\mathbf{j}\frac{2\pi}{m})$ be the mth root of unity.
- Let $\mathbb{Z}[\zeta_m]$ denote the ring generated by \mathbb{Z} , all integers, and ζ_m . It is called a *cyclotomic ring*.
- When m=4, $\mathbb{Z}[\zeta_m]=\mathbb{Z}[\mathbf{j}]$ that is called Gaussian integers.
- ullet When m=3,6, $\mathbb{Z}[\zeta_3]=\mathbb{Z}[\zeta_6]$ that is called Eisenstein integers.
- ullet An important result from algebraic number theory: For a fixed L,

$$\min_{(0,\cdots,0)\neq(\mathbf{x}_1,\cdots,\mathbf{x}_L)\in(\mathbb{Z}[\zeta_m])^L}\prod_{i=1}^L|\mathbf{x}_i|=1$$

where m=3,4,6, i.e., for Gaussian or Eisenstein integers.

We next want to define cyclotomic lattices.

Real Lattices

• An n-dimensional real lattice $\Lambda_n(K)$ is a subset in \mathbb{R}^n :

$$\Lambda_n(K) = \left\{ \left[egin{array}{c} x_1 \ dots \ x_n \end{array}
ight] = K \left[egin{array}{c} z_1 \ dots \ z_n \end{array}
ight] \left| egin{array}{c} z_i \in \mathbb{Z} & ext{for } 1 \leq i \leq n \ \end{array}
ight\},$$

where \mathbb{Z} is the ring of all integers and K is an $n \times n$ real matrix of full rank and called the generating matrix of the real lattice $\Lambda_n(K)$ and $\det(\Lambda_n(K)) \stackrel{\Delta}{=} |\det(K)|$.

- Every point $[x_1, x_2]^T$ in a two dimensional real lattice $\Lambda_2(K)$ is treated equivalently as a complex number $\mathbf{x} = x_1 + jx_2$ in the complex plane \mathbb{C} .
- ullet For $\zeta_m=\exp(jrac{2\pi}{m})$, we use Λ_{ζ_m} to denote the two dimensional real lattice

with the generating matrix

$$K_{\zeta_m} = \left[egin{array}{cc} 1 & \cos(rac{2\pi}{m}) \ 0 & \sin(rac{2\pi}{m}) \end{array}
ight] = \left[egin{array}{cc} 1 & \mathrm{Re}(\zeta_m) \ 0 & \mathrm{Im}(\zeta_m) \end{array}
ight].$$

Thus, $\Lambda_{\zeta_m} = \Lambda_2(K_{\zeta_m})$.

$$\bullet \ \Lambda_{\zeta_m} \subset \mathbb{Z}[\zeta_m], \ \Lambda_{\zeta_4} = \mathbb{Z}[\zeta_4] = \mathbb{Z}[j], \ \text{ and } \Lambda_{\zeta_3} = \Lambda_{\zeta_6} = \mathbb{Z}[\zeta_3] = \mathbb{Z}[\zeta_6]$$

Complex Lattices

• **Definition**: An n-dimensional complex lattice $\Gamma_n(G)$ over a two dimensional real lattice $\Lambda_2(K)$ is a subset of \mathbb{C}^n :

$$\Gamma_n(G) = \left\{ \left[egin{array}{c} \mathbf{y}_1 \\ draingledows \\ \mathbf{y}_n \end{array}
ight] = G \left[egin{array}{c} \mathbf{x}_1 \\ draingledows \\ \mathbf{x}_n \end{array}
ight] \left| egin{array}{c} \mathbf{x}_i \in \Lambda_2(K), & \text{for } 1 \leq i \leq n \\ \mathbf{x}_n \end{array}
ight\},$$

where G is an $n \times n$ complex matrix of full rank and called the generating matrix of the complex lattice $\Gamma_n(G)$. The above complex lattice is called a full diversity lattice if it satisfies

$$\prod_{i=1}^{n} |\mathbf{y}_i| > 0$$

for any non-zero vector $[\mathbf{x}_1,\cdots,\mathbf{x}_n]^T \neq [0,\cdots,0]^T$ in $(\Lambda_2(K))^n$.

Examples

- Rotated Codes Based on QAM on the Square Lattice: G_2 and G_4 , 2-point and 4-point DFT matrices based on $\mathbb{Z}[\zeta_4]$ (Boutros-Viterbo (98) and Giraud-Boutillon-Belfiore (97))
- Good Codes for Fading Channels as well as Gaussian Channels: D_4 , E_6 , E_8 , G_2 , G_3 , G_4 based on $\mathbb{Z}[\zeta_4]$ and $\mathbb{Z}[\zeta_3]$ (Boutros-Viterbo (98) and Giraud-Boutillon-Belfiore (97))
- Diagonal Algebraic Space-Time Block Codes DAST Block Codes based on $\mathbb{Z}[\zeta_4]$: M_n (Boutros-Viterbo (98) and Damen-Meraim-Belfiore (02))

Cyclotomic Lattices

ullet For two positive integers n and m, let N=mn and

$$L_t = \frac{\phi(N)}{\phi(m)},$$

where $\phi(N)$ and $\phi(m)$ are the Euler numbers of N and m, respectively.

- Then, there are total L_t distinct integers n_i , $1 \leq i \leq L_t$, with $0=n_1 < n_2 < \cdots < n_{L_t} \leq n-1$ such that $1+n_im$ and N are co-prime for any $1 \leq i \leq L_t$.
- ullet With these L_t integers, we define

$$G_{m,n} \stackrel{\triangle}{=} \begin{bmatrix} \zeta_{N} & \zeta_{N}^{2} & \cdots & \zeta_{N}^{L_{t}} \\ \zeta_{N}^{1+n_{2}m} & \zeta_{N}^{2(1+n_{2}m)} & \cdots & \zeta_{N}^{L_{t}(1+n_{2}m)} \\ \vdots & \vdots & \ddots & \vdots \\ \zeta_{N}^{1+n_{L_{t}}m} & \zeta_{N}^{2(1+n_{L_{t}}m)} & \cdots & \zeta_{N}^{L_{t}(1+n_{L_{t}}m)} \end{bmatrix}_{L_{t} \times L_{t}},$$

where $\zeta_N = \exp(j\frac{2\pi}{N})$.

• **Definition**: An L_t dimensional complex lattice $\Gamma_{L_t}(G_{m,n})$ over Λ_{ζ_m} is called a cyclotomic lattice, where $G_{m,n}$ is defined above and Λ_{ζ_m} is the two dimensional real lattice with the generating matrix K_{ζ_m} . Its minimum product $d_{\min}(\Gamma_{L_t}(G_{m,n}))$ is defined by

$$d_{min}(\Gamma_{L_t}(G_{m,n})) \stackrel{\Delta}{=} \min_{[0,\cdots,\cdots,0]^T \neq [\mathbf{y}_1,\cdots,\mathbf{y}_{L_t}]^T \in \Gamma_{L_t}(G_{m,n})} \left| \prod_{i=1}^{L_t} \mathbf{y}_i \right|.$$

• Some equivalent forms of $G_{m,n}$:

$$G_{m,n} \stackrel{\Delta}{=} \operatorname{diag}(\zeta_N, \zeta_N^{1+n_2m}, \cdots, \zeta_N^{1+n_{L_t}m}) \hat{G}_{m,n},$$

where

$$\hat{G}_{m,n} \triangleq \begin{bmatrix} 1 & \zeta_{N} & \cdots & \zeta_{N}^{L_{t}-1} \\ 1 & \zeta_{N}^{1+n_{2}m} & \cdots & \zeta_{N}^{(L_{t}-1)(1+n_{2}m)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \zeta_{N}^{1+n_{L_{t}}m} & \cdots & \zeta_{N}^{(L_{t}-1)(1+n_{L_{t}}m)} \end{bmatrix}_{L_{t} \times L_{t}}.$$

$$G_{m,n} = egin{bmatrix} \zeta_n^{n_1} & \zeta_n^{2n_1} & \cdots & \zeta_n^{L_t n_1} \ \zeta_n^{n_2} & \zeta_n^{2n_2} & \cdots & \zeta_n^{L_t n_2} \ dots & dots & \ddots & dots \ \zeta_n^{n_{L_t}} & \zeta_n^{2n_{L_t}} & \cdots & \zeta_n^{L_t n_{L_t}} \end{bmatrix}_{L_t imes L_t} \operatorname{diag}(\zeta_N, \zeta_N^2, \cdots, \zeta_N^{L_t}).$$

 A difference with the existing results on this topic is that the above proposed cyclotomic lattice generating matrix is concrete and systematic.

Cyclotomic Diagonal Space-Time Codes

• **Definition**: A diagonal cyclotomic space-time code Ω for L_t transmit antennas is defined by $\Omega = \{ \operatorname{diag}(\mathbf{y}_1, \cdots, \mathbf{y}_{L_t}) \}$ where \mathbf{y}_i for $1 \leq i \leq L_t$ are defined as follows:

$$[\mathbf{y}_1, \cdots, \mathbf{y}_{L_t}]^T = G_{m,n}[\mathbf{x}_1, \cdots, \mathbf{x}_{L_t}]$$

where $[\mathbf{x}_1, \cdots, \mathbf{x}_{L_t}]^T \in \mathcal{S} \subset (\mathbb{Z}[\zeta_m])^{L_t}$ and \mathcal{S} is a signal constellation for information symbols.

- Theorem 2: A diagonal cyclotomic space-time code has full diversity.
- $G_2 = \hat{G}_{4,2}$ and $G_4 = \hat{G}_{4,4}$.
- Question: For a transmit antenna number L_t , there are infinitely many cyclotomic lattices $G_{m,n}$ from infinitely many pairs (m,n). For a fixed L_t , which cyclotomic lattice is **optimal** in the sense that, its mean transmission power is minimized when its diversity product is fixed?

Optimal Cyclotomic Lattices

- The mean transmission signal power of signal points on a lattice is reciprocal to the packing density.
- From the packing theory, the packing density is reciprocal to the absolute value of the determinant of the generating matrix.
- The absolute value of the determinant of the generating matrix of a cyclotomic is

$$|\det(G_{m,n})|^2 \cdot |\det(K_{\zeta_m})|^{L_t}$$
.

• Criterion: Let $\Gamma_{L_t}(G_{m_1,n_1})$ and $\Gamma_{L_t}(G_{m_2,n_2})$ be two L_t dimensional cyclotomic lattices over $\Lambda_{\zeta_{m_1}}$ and $\Lambda_{\zeta_{m_2}}$, respectively. We say cyclotomic lattice $\Gamma_{L_t}(G_{m_1,n_1})$ is better than cyclotomic lattice $\Gamma_{L_t}(G_{m_2,n_2})$, written as $\Gamma_{L_t}(G_{m_1,n_1}) \leq \Gamma_{L_t}(G_{m_2,n_2})$, if

$$|\det(G_{m_1,n_1})| \cdot |\det(\Lambda_{\zeta_{m_1}})|^{L_t/2} \le |\det(G_{m_2,n_2})| \cdot |\det(\Lambda_{\zeta_{m_2}})|^{L_t/2},$$

when their minimum products are the same, i.e.,

$$d_{\min}(\Gamma_{L_t}(G_{m_1,n_1})) = d_{\min}(\Gamma_{L_t}(G_{m_2,n_2})).$$

Define the following normalized minimum product

$$\gamma_{m,n} = \frac{d_{\min}(\Lambda_{L_t}(G_{m,n}))}{|\det(\Gamma_{\zeta_m})|^{L_t/2}|\det(G_{m,n})|}$$

• Theorem 3: If the number of transmit antennas has the form

$$L_t = rac{\phi(3n)}{\phi(3)} \; ext{ or } rac{\phi(6n)}{\phi(6)}, \; ext{ for some integer } n,$$

then the optimal cyclotomic lattice can be achieved by an Eisenstein cyclotomic lattice, i.e., m=3 or m=6, and the minimum product (or diversity product) of the optimal cyclotomic lattice is 1.

ullet Examples of such L_t are

$$L_t = 3^{r_1} p_2^{r_2 - 1} (p_2 - 1) \cdots p_k^{r_k - 1} (p_k - 1),$$

where $k \geq 1$, p_2, \cdots, p_k are distinct primes and different from 3, and $r_1 \geq 0$, $r_2 \geq 1, \cdots, r_k \geq 1$ are integers, which covers 2,3,4,6,8,9,10,12,16,18,20,22,24,27,28,30,32,....

• **Corollary**: For the listed numbers, L_t , of transmit antennas, the parameters (m,n) of the optimal cyclotomic lattices $\Gamma_{L_t}(G_{m,n})$ over Λ_{ζ_m} with generating matrix $G_{m,n}$ are listed in the following table.

L_t	(m,n) in $G_{m,n}$	$\gamma_{m,n}$
2	(3,4), (4,3), (6,2)	$\frac{1}{\sqrt{3}}$
3	(3,3),(3,6),(6,3)	$\frac{1}{4.1878}$
4	(3,5), (3,10), (6,5)	$\frac{1}{8.3852}$
6	(3,7), (3,14), (6,7)	$\frac{1}{84.2037}$
8	(3, 20), (4, 15), (6, 10)	$\frac{1}{1.125 \times 10^3}$
9	(3,9), (3,18), (6,9)	$\frac{1}{1.0303 \times 10^4}$
10	(3, 11), (3, 22), (6, 11)	$\frac{1}{2.3655 \times 10^4}$
12	(3, 15), (3, 30), (6, 15)	$\frac{1}{4.2981 \times 10^5}$
16	(3,40), (4,30), (6,20)	$\frac{1}{3.24\times10^8}$
18	(3,21), (3,42), (6,21)	$\frac{1}{1.1752 \times 10^{10}}$
20	(3, 25), (3, 50), (6, 25)	$\frac{1}{4.0484 \times 10^{11}}$
22	(3,23),(3,46),(6,23)	$\frac{1}{4.083 \times 10^{13}}$
24	(3,35),(3,70),(6,35)	$\frac{1}{9.8192 \times 10^{13}}$
27	(3,27), (3,54), (6,27)	$\frac{1}{3.0205 \times 10^{18}}$
28	(3,29), (3,58), (6,29)	$\frac{1}{7.3757 \times 10^{18}}$

Optimal Diagonal Cyclotomic Space-Time Code Designs

- Optimal diagonal cyclotomic space-time block codes can be designed by
 - selecting optimal cyclotomic lattices
 - selecting signal points on the optimal cyclotomic lattices with the minimum mean transmission power (i) the information symbols are independently selected (ii) the information symbols are jointly selected.
- Design Examples

Diversity Products of Diagonal Codes for Two and Four Transmit Antennas

F	3it rate	Space-Time Codes, $L_t=2$					
	b/s/Hz	\mathbf{M}_2 - $\mathbb{Z}[j]$ -QAM	$G_2 ext{-}\mathbb{Z}[j] ext{-}QAM$	G_2 - $\mathbb{Z}[j]$ -Joint	$G_{6,2}$ - Λ_{ζ_6} -QAM	$G_{6,2}$ - Λ_{ζ_6} -	Joint
	2	$\frac{1}{4.47}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	
	3	$\frac{1}{5.5231}$	$\frac{1}{5}$	$\frac{1}{4.6562}$	$\frac{1}{4.3125}$	$\frac{1}{4.125}$	
	4	$\frac{1}{11.2}$	$\frac{1}{10}$	$\frac{1}{9.5703}$	$\frac{1}{8.75}$	$\frac{1}{8.2266}$	

I	it rate	Space-Time Codes, $L_t=4$					
	b/s/Hz	\mathbf{M}_4 - $\mathbb{Z}[j]$ -QAM	$G_4 ext{-}\mathbb{Z}[j] ext{-}QAM$	G_4 - $\mathbb{Z}[j]$ -Joint	$G_{6,5}$ - Λ_{ζ_6} -QAM	$G_{6,5}$ - Λ_{ζ_6} -	Joint
	2	$\frac{1}{640}$	$\frac{1}{256}$	$\frac{1}{94.15}$	$\frac{1}{64}$	$\frac{1}{43.0664}$	
	3	$\frac{1}{1000}$	$\frac{1}{400}$	$\frac{1}{323.2265}$	$\frac{1}{297.5625}$	$\frac{1}{170.514}$	
	4	$\frac{1}{4000}$	$\frac{1}{1600}$	$\frac{1}{1305.9}$	$\frac{1}{1225}$	$\frac{1}{681.841}$	3

Simulation Results

Figure 1: Symbol error rate, information rate $R=2\,\mathrm{bits/s/Hz}.$

Figure 2: Symbol error rate, information rate $R=3\,\mathrm{bits/s/Hz}.$

Figure 3: Symbol error rate, information rate $R=4\,\mathrm{bits/s/Hz}.$

More Results

• We have generalized the optimal diagonal cyclotomic space-time codes to multi-layer cyclotomic space-time codes for 2 and 3 transmit antennas

- Obtained some results on super-orthogonal trellis codes from QAM constellations
- Obtained some results on unitary space-time code designs from APSK signals

- Obtained a new family of recursive space-time trellis codes
- Obtained closed-form designs of complex orthogonal designs of rates (k+1)/(2k) for 2k or 2k+1 transmit antennas.
- Obtained some new unitary space-time codes with best and best known diversity product diversities by using packing theory.
- Obtained optimal quasi-orthogonal space-time codes with minimum decoding complexity.
- Obtained a fast iterative decoding algorithm for lattice based space-time codes based on soft interference cancellation.
- Applied some of our newly proposed space-time codes into a relay sensor network.

Simulation Result for Our Optimal Full Rate Full Diversity Code: R=4 bits/s/Hz

Future Research

- Space-time code designs beyond cyclotomic rings: for example, $\mathbb{Z}[\zeta_m,\sqrt{5}]$
- Optimal multi-layer cyclotomic and quadratic space-time codes for more than
 3 transmit antennas
- Space-time code designs for relay sensor networks to achieve optimal cooperative diversity
- Recursive space-time trellis code designs with optimal diversity products
- Super quasi orthogonal space-time trellis code designs

Conclusion

- Proposed systematic and concrete full diversity cyclotomic lattices and space-time block codes.
- Proposed optimal cyclotomic lattices and space-time block codes by minimizing the mean transmission power when their diversity products are fixed.

Acknowledgment

I would like to thank my following current and former group members:

Genyuan Wang, Weifeng Su, Xuebin Liang, Haiquan Wang, Huiyong Liao, Shengli Fu, Dong Wang, Yabo Li, Aijun Song